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Abstract. We consider some radiative corrections to the lowest order annihilation diagram for the or-
thopositronium decay rate. The insertion of the renormalized vertex correction in the annihilation graph
gives 1.6278 (α/π)2 Γ0. We compute also the contribution of the square of the lowest order annihilation
amplitude, which turns out to be 0.1702 (α/π)2 Γ0. Finally, we obtain a term α2 ln α Γ0 arising from the
correction to the light–light scattering block due to the exchange of one coulombic photon, in agreement
with earlier computations.

1 Introduction

Measurements of orthopositronium (Ops) decay rate in the
recent years pose a great challenge in QED due to the
large discrepancy between the experimental result and the
theoretical predictions [1]. In fact, the two most accurate
experimental rates [2,3]

λexp
Ops

= 7.0514 ± 0.0014 µs−1 and

λexp
Ops

= 7.0482 ± 0.0016 µs−1 ,

deviate by 9.4 σ and 6.2 σ from the theoretical value1,
whose most accurate estimate to order α/π has been given
in [5]:

λQED

Ops
(PS → 3 γ) = 7.038236 ± 0.000010 µs−1 .

The decay rate to leading order,

Γ0 =
α6mc2

h̄

2 (π2 − 9)
9 π

= 7.21117 µs−1 , (1)

was computed by Ore and Powell [6] and the order α cor-
rections by several authors [5,7–10].

Faced up to this difficulty, theorists have made a great
effort to compute the next correction, (α/π)2, of the per-
turbative expansion [11–13]:

λQED

Ops
(PS → 3 γ) = Γ0

[
1 + (−10.2866 ± 0.0006)

α

π
1 Recently a new experiment [4] gave the value 7.0398 ±

0.0025±0.0015 µs−1 (the first error is statistical and the second
systematic), in good agreement with the theoretical expecta-
tion. However, an independent confirmation of this measure-
ment is necessary before concluding that the Ops problem is
experimental instead of theoretical

+ C
(α

π

)2
+ O((α/π)3)

]
. (2)

To get rid of the theoretical–experimental discrepancy, the
coefficient C must be of order 250±40. Such a large value
cannot be excluded, even if it may appear unnatural in
the framework of perturbation theory (PT). If the results
of [4] are correct (see footnote 1) only C ≈ 30 is required.

The computation of C is very hard due to the large
number of Feynman diagrams contributing to the α2 or-
der of PT. Some of these have been already calculated:
the vacuum polarization type corrections to the first or-
der graphs were considered in [11], the radiative correc-
tions to the light–light scattering block in [12], and the
square of the first order amplitude in [13]. The relativis-
tic corrections, i.e. those associated with the expansion in
v/c ∼ α, where v is the relative velocity of the e+e− pair
in positronium, were taken into account up to order α2 in
[14].

All the contributions to the amplitude up to second
order PT may be written in the form:

M = M0 +
α

π
( MB′ + MA + M1 )

+
(α

π

)2
( MAB′ + MAR + M2 ) + 0

(
α3) , (3)

where2 M1 represents the sum of all the first order am-
plitudes with the exceptions of the annihilation diagram

2 Note that here and in the rest of the paper we write explic-
itly the powers of α/π, relative to the lowest order M0, for each
amplitude. (For example, MA is of the same order as M0). On
the contrary, we omit them in the text. Note also that we will
not write any power of α/π for the two unsubtracted binding
amplitudes, MB and MAB, since they contain terms of different
order in α/π
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Fig. 1. The annihilation graph

(see Fig. 1), denoted by MA, and the subtracted binding
amplitude, MB′ [5]. The second order annihilation type
corrections are given by the subtracted binding diagram,
MAB′ (Fig. 2a) and the radiative corrections to the light–
light scattering block, MAR (an example of which is given
in Fig. 2b). M2 denotes the remaining (non–annihilation
type) second order amplitudes.

In this paper we consider the second order corrections
given by MA and MAB′ and the logarithmic enhancement
produced by a coulombic one photon exchange in MAR.
The contribution of these corrections to the decay rate
has the form(α

π

)2 [
2 Re ( M∗

AB′ M0 ) + |MA|2
]

+ α2 lnα |M0|2 . (4)

The previous expression must be summed over the final
photon polarizations, averaged over the Ops spin states
and integrated over the phase space of the three final pho-
tons, with the proper kinematical factors (see for example
[5]).

The remaining part of the paper is organized as fol-
lows: in the second section we compute the contributions
of the binding corrections to the lowest order annihilation
diagram. In section three, using the known results for the
light–light scattering tensor, we compute the contribution
of the square of the lowest order annihilation amplitude.
Finally, in the fourth section we consider the exchange of
one coulombic photon in the light–light scattering block
of the annihilation amplitude, finding a logarithmic con-
tribution in agreement with earlier calculations [9,15,12,
16].

2 Radiative corrections
to the annihilation process

It is well known [17,18] that the contribution to the am-
plitude for the Ops decay rate originated by the binding
diagram contains also the lowest order approximation:

MB = M0 +
α

π
MB′ . (5)

Therefore only the subtracted binding diagram MB′ must
be included, otherwise M0 would be counted twice. This
phenomenon occurs due to the presence of the coulombic
part in the virtual photon propagator, which had been al-
ready taken into account when solving the Bethe–Salpeter
equation for the Ops wave function.

It is quite clear that the analogous phenomenon should
come out in the “binding” type radiative correction to the

lowest order annihilation diagram (see Fig. 2a), and in fact
we shall show in this section that the amplitude MA is
contained in MAB. Therefore, we can write:

MAB =
α

π
MA +

(α

π

)2
MAB′ , (6)

where MAB′ is the subtracted binding–annihilation ampli-
tude.

We express the amplitude as a product

M (m, λ)
AB =

−i

4m2 T (m) ρ G(λ)
ρ . (7)

In the previous formula the 4–vector G(λ)
ρ describes the

transition of the heavy photon to three real ones, λ =
(λ2, λ3, λ4) stands for the set of the three polarizations of
the final photons, λi = ±1, and T (m)

ρ is the order α correc-
tion to the annihilation current 4–vector of the positron-
ium in the polarization state εm. Explicitly:

T (m)
ρ

= − ieα

4π

∫
d4p

(2π)4

∫
d4k

iπ2

∆µν(k − p)
(k − p)2

×

Tr
{
Ψ (m)(p) γµ

[
−P̂ /2 + k̂ + m

]
γρ

[
P̂ /2 + k̂ + m

]
γν

}
[(−P/2 + k)2 − m2] [(P/2 + k)2 − m2]

+Ct , (8)

where Ct stands for the contribution of the vertex coun-
terterm. We use the notation k̂ = kµγµ and here and
everywhere in this paper a term i0 must be implicitly un-
derstood in each factor of the denominator arising from a
propagator (only in (56) the i0 will be explicitly written).
In (8) P is the Ops momentum in its rest frame:

P = (2W, 0, 0, 0), with W ≈ m − γ2

2m
, and γ =

m α

2
.

The wave function Ψ (m)(p) of Ops relevant to our approx-
imation is (see for example [5,19]):

Ψ (m)(p) = (2π) δ(p0)
√

2m

[
0 σ · εm

0 0

]
Φ(p) , (9)

with Φ(p) the nonrelativistic ground–state wave function

Φ(p) = φ0
8πγ

( |p|2 + γ2 )2
(10)

and the constant φ0 is the wave function at the origin,
φ0 =

√
γ3/π.

The ∆µν tensor obviously depends on the gauge we
use. The choice of the gauge is subtle when dealing with
bound state problems. It has been discussed elsewhere (see
for example [10]) that the Coulomb gauge is the most
natural for calculations in positronium. However, covari-
ant gauges are simpler for computing radiative correc-
tions, and, among them, the Fried–Yennie (FY) gauge is
the most convenient, due to its good infrared behaviour.
We shall compute T (m)

ρ both in the FY gauge and in the
Coulomb gauge. As expected, the result is the same in
both cases, and no gauge correction term must be added
when using the FY gauge.
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Fig. 2. Two different kinds of corrections to the anni-
hilation graph. a is the vertex correction, b represents
the insertion of a photon into the light–light scatter-
ing block, which generates a logarithmically enhanced
contribution. The direction of the fermions in the final
loops is clockwise for all the two diagrams

2.1 Fried-Yennie gauge

The FY gauge is a covariant gauge defined by

∆µν(k) = gµν + 2
kµkν

k2 . (11)

It has good infrared properties, allowing us to work safely
with a zero fictitious photon mass from the beginning.

Following [5] we separate the trace entering the in-
tegrand of (8) into two pieces, one which remains non–
singular at k=0 and one containing the contribution of
the coulombic photon. To this end, we define

trµνρ(k)=Tr
{

Ψ (m)(p) γµ

[
−P̂ /2 + k̂ + m

]
×γρ

[
P̂ /2 + k̂ + m

]
γν

}
(12)

and write: trµνρ(k) = trµνρ(0) + {trµνρ(k) − trµνρ(0)}.
We consider first the term trµνρ(0). The γ matrices

algebra leads to:

trµνρ(0)=−4 W 2 δµ0 δν0 Tr

{
γρ

[
0 σ · εm

0 0

]}
+O(α2) . (13)

To arrive to the last expression we have used the fact that(
1
2
P̂ − m

)
Ψ (m)(p)=O(α2)

Ψ (m)(p)
(

1
2
P̂ + m

)
=O(α2) . (14)

The integration in p0 in (8) is trivial, using the delta
function entering the formula (9). It remains the following
integral:∫

d3p

(2π)3
8πγ

(|p|2 + γ2)2

∫
d4k

(iπ2)

×
−W 2

(
1 + 2 k2

0
(k−p)2

)
(k − p)2

[
(k + 1

2P )2 − m2
] [

(k − 1
2P )2 − m2

] , (15)

whose result, π
α − 3 + O(α2), can be found in [5]. Hence

the contribution of this term to T (m)
ρ is:

− i
α3m2

π
Tr

{
γρ

[
0 σ · εm

0 0

]} ( π

α
− 3

)
. (16)

Let us now consider the remaining term, trµνρ(k) −
trµνρ(0). In this case the integral is free from infrared sin-
gularities and we can put p = 0 in the loop integral, in-
troducing an error of order α2. However, ultraviolet diver-
gences are present; we regulate them by using dimensional

regularization (the analogous calculation in cut-off regu-
larization is performed in Appendix A). It is important to
remember that some care is necessary when using dimen-
sional regularization in the FY gauge. As was shown by
G. Adkins [20], it is convenient to choose the tensor ∆µν

as:
∆µν(k) = gµν +

2
1 − 2ε

kµ kν

k2 , (17)

where ε = (4 − d)/2 and d is the complex space-time di-
mension.

Using γ matrices algebra and (14) one can see that the
only contribution of trµνρ(k)− trµνρ(0) to the integral (8)
is given by:

Tr

{
γµ k̂ γρ k̂ γν

[
0 σ · εm

0 0

]}
. (18)

In this way we arrive to the following integral:

− i e α

4π

∫
ddk

iπ2(2πµ)−2ε

× γµ k̂ γρ k̂ γν ∆µν(k)
k2

[
(k + 1

2P )2 − m2
] [

(k − 1
2P )2 − m2

] , (19)

where µ is the dimensional parameter introduced in di-
mensional regularization. The integral (19) can be evalu-
ated by standard techniques, giving

− ieα

4π
( 3D + 8 − 2 δρ0) γρ , (20)

where D = 1
ε − γE + ln 4πµ2

m2 . (The number γE = 0.57721
is the Euler constant).

Note that current conservation implies P ρ G(λ)
ρ = 0.

Since we work in the positronium rest frame (P = 0), it
follows G(λ)

0 = 0 and the term with δρ0 in (20) can be
ignored. The contribution of the remaining term to T (m)

ρ

is then:

− iα3

4π
m2 ( 3D + 8 ) Tr

{
γρ

[
0 σ · εm

0 0

]}
. (21)

Adding (16) and (21), inserting the result in (7) and
noting that the first order annihilation amplitude MA can
be written as

α

π
MA = −α2

4
Tr

{
γρ

[
0 σ · εm

0 0

]}
G(λ) ρ(k2, k3, k4) ,

(22)
we obtain the following contribution to MAB :

α

π
MA

[
1 +

α

π

(
−3 +

3D + 8
4

)]
. (23)
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The contribution of the vertex counterterm will cancel
the divergence appearing in (23). Due to the Ward iden-
tity, this counterterm can be obtained from the self–energy
correction to the electron propagator.

To order α the mass operator has the form:

Σ(l) =
α

4π

∫
d4k

iπ2

γµ (l̂ − k̂ + m) γν ∆µν(k)
k2 [(l − k)2 − m2]

. (24)

On mass–shell renormalization conditions imply

i

p̂ − m0 − Σ(p)
→ iZ

p̂ − m
, p̂ → m , (25)

where m0 is the bare electron mass. From (24) it is possi-
ble to obtain the electron wave function renormalization
constant, which in the FY gauge is [20]:

ZFY = 1 − α

4π
( 3D + 4 ) . (26)

It follows that the contribution to the amplitude of the
vertex counterterm is:

−
(α

π

)2 3D + 4
4

MA . (27)

Finally, summing up all the contributions considered
here (the terms trµνρ(0) and trµνρ(k) − trµνρ(0), and the
counterterm insertion) we get:

MAB =
(

1 − 2
α

π

) α

π
MA . (28)

2.2 Coulomb gauge

We will show now that the same result is obtained working
in the Coulomb gauge. This gauge is obtained by making
the substitution:

−i

(k − p)2
∆µν(k − p) → Gµν(k − p) , (29)

where Gcb
µν(q) is the Coulomb propagator:

G00(q)=
i

q 2 ,

G0i(q)=Gcb

i0(q) = 0 , (30)

Gij(q)=
i

q2

(
δij − qiqj

q 2

)
.

Again, using γ matrices algebra and (14), we rewrite
the trace in the numerator of (8) as

trµνρ(k)
= −PµPν Tr [Ψ (m)(p) γρ]

+Tr
[
Ψ (m)(p) γν k̂ γρ k̂ γµ

]
+Tr

[
Ψ (m)(p)

(
Pµ γν k̂ γρ − Pν γρ k̂ γµ

)]
. (31)

It is easy to see that the last term vanishes after con-
tracting the Lorentz indices with the ones of the photon
propagator. The contribution of the first term to T (m)

ρ is

−α3 (16π) m4 Tr

{
γρ

[
0 σ · εm

0 0

]}
I0 , (32)

where I0 is defined by:

I0=
∫

d3p

(2π)3
8πγ

(p2 + γ2)2

∫
d4k

(4π)2
(33)

× 1
(k − p)2 [(−P/2 + k)2 − m2] [(P/2 + k)2 − m2]

.

This integral has been studied in [18]. Its result is

I0 =
i

(4π)2
1

m2

( π

α
− 2

)
. (34)

Using this result and considering (7) and (22), we find that
the contribution of the first term of (31) to the amplitude
is

( 1 − 2 α/π )
(α

π
MA

)
, (35)

which is the total result obtained in the FY gauge.
Now we will show that the contribution of the second

term in (31) exactly cancels against the contribution of
the Coulomb gauge vertex counterterm. Hence, the result
in the Coulomb gauge is the same as in the FY gauge.

The second term of (31) gives raise to an UV diver-
gence. Again, we choose dimensional regularization to give
a meaning to the loop integral. We work in d = 2ω dimen-
sions, with one temporal and 2ω − 1 spatial dimensions.

As in the case of the FY gauge, there is no infrared
problem for this term, and we can put p = 0 in the photon
propagator of the integral (8). We have

e3
∫

d2ωk

(2πµ)2ω

× γν k̂ γρ k̂ γµ Gµν(k)
[(−P/2 + k)2 − m2] [(P/2 + k)2 − m2]

. (36)

The formulae for integrals of non–covariant functions
in this dimensional regularization prescription can be
found in [21]. After standard computations and taking
into account the fact that the terms with the Lorentz in-
dex ρ = 0 do not contribute to the amplitude, we obtain:

− i e3

(4π)2

(
4
3

D +
20
9

)
γρ (37)

for the case of the temporal propagator, G00, and

i e3

(4π)2

(
1
3

D +
20
9

)
γρ (38)

for the contribution of the spatial components Gij of the
photon propagator. The total result is therefore

α

4π
D (−i e γρ) . (39)
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The contribution of the vertex counterterm is given by
δZ1 (−i e γρ). Since the vertex counterterm to order α in
the Coulomb gauge is [21]

δZ1 = − α

4π
D , (40)

we see that the counterterm exactly cancels the contribu-
tion of the second term in (31), as we wanted to show, and
then, the amplitude is given by (28) also in the Coulomb
gauge.

2.3 Conclusion

As claimed at the beginning of this section, we must con-
sider only the subtracted amplitude,

MAB′ = MAB − α

π
MA = −2

(α

π

)2
MA . (41)

Hence the Ops decay rate receives a contribution given by
the integral of

1
3

∑
m

1
3!

∑
λ

2 Re
(
M (m λ)

AB′
∗ M

(m λ)

0

)
(42)

over the phase space of the three final photons. Since MAB′

is proportional to the lowest order annihilation amplitude,
the contribution to the width is proportional to the lowest
order annihilation width, whose value can be found in [5]:
ΓA = −0.81389 (α/π) Γ0.
Therefore, the renormalized vertex correction to the anni-
hilation amplitude turns out to be:

ΓAB′ = −2
α

π
ΓA = 1.6278

α2

π2 Γ0 . (43)

This result exactly coincides with the estimation made by
Karshenbŏim [22]. Notice that, differently from the lowest
order annihilation case, it contributes positively in the di-
rection of reducing the theoretical–experimental discrep-
ancy. Its numerical value, however, is too small to make a
significant progress.

3 Lowest order annihilation diagram

Now we consider the lowest order annihilation matrix el-
ement (Fig. 1):

−
√

4πα

4m2

∫
d4p

(2π)4
Tr {Ψ (m)(p)γρ} G(λ) ρ . (44)

The integral over p is trivially performed. The next stage
is to square the resulting matrix element and make the
average over the Ops polarization states [5]. After simple
calculations, similar to those performed in the paper of
one of us [23], – where the production of tree gluonic jets

in electron–positron colliding beams was considered – , we
obtain the following contribution to the width3:

ΓA2=−m
α4

210 9 π3

×
∫

d3νδ (Σνi − 2) Σλ G(λ)
ρ G(λ) ρ . (45)

To arrive to (45), we have expressed the phase space vol-
ume of the three final photons as:∫

d3k2 d3k3 d3k4

ω2 ω3 ω4
δ4(P − k2 − k3 − k4)

= 8π2m2
∫

dν2 dν3 dν4δ (2 − ν2 − ν3 − ν4) , (46)

where νi = ωi

m = |ki|
m .

At this point we use the results of papers [23,24],
namely:

−Σλ G(λ)
ρ G(λ) ρ

= 26 α4 [R(234) + R(324) + R(423)] (47)

R(234)=R(243)

=
1
3

∣∣∣ E(2)
−++(234)

∣∣∣2 +
∣∣∣ E(2)

+++(234)
∣∣∣2

+
ν2

ν3ν4a2

∣∣∣ E(1)
−++(324)

∣∣∣2
+

1
ν2
2

∣∣∣ E(1)
+++(234) + E(1)

+++(243)
∣∣∣2

+
a3a4

ν2
2a2

∣∣∣∣ 1
a3

E(1)
+++(234) − 1

a4
E(1)
+++(243)

∣∣∣∣
2

, (48)

where ai = 1 − νi. The rather cumbersome functions E ,
whose arguments are the νi, were calculated in the paper
of Costantini et al. [24]. Their expressions are explicitly
written in Appendix B. After numerical integration over
the phase space, we find:

ΓA2 = b
(α

π

)2
Γ0 , (49)

b=
∫

d3ν δ(2 − Σiνi) [R(234) + R(324) + R(423)]
32(π2 − 9)

=0.17021(10) . (50)

We would like to stress that the contribution from
muon (and hadrons) as fermions in the loop is negligible
(of order (me/mµ)4) [7].

In conclusion, the total correction find here, adding
(50) to (43), is 1.7983 (α/π)2 Γ0. Manifestly, it is still far
from solving the discrepancy between the modern theo-
retical and experimental results. If the Ops problem is to
be solved by this kind of perturbation theory, larger con-
tributions to the width must be searched in another class
of diagrams.

3 Remember that the vector G(λ)
ρ is space-like, as explained

before. Therefore, ΓA2 is positive, in spite of what at first sight
might seem due to the minus sign in the r.h.s. of (45)
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4 Coulombic exchange
in the light-light scattering block

In this section we shall obtain a known logarithmically en-
hanced contribution arising from radiative corrections to
the light–light scattering block. The whole set of these ra-
diative corrections has been already computed by Adkins
and Lymberopoulos [12]. We present here a simple com-
putation of the term of order α2 lnα, which arises from
the diagram displayed in Fig. 2b.

The contribution to the amplitude of the radiative cor-
rections to the light–light scattering block can be repre-
sented by:

M (λ)
AR=−i e

∫
d4p

(2π)4
Tr {Ψ (m)(p) γρ }

× −i

4m2 G(λ) ρ
(R) (k2, k3, k4) , (51)

where the subscript (R) in G(λ) ρ
(R) means the order α radia-

tive corrections.
We are interested in the contributions to G(λ) ρ

(R) of the
loops of the form represented by Fig. 2b.4 It is given by

− i e3

(4π)2

∫
d4l

(2π)4

∫
d4k

iπ2

∆µν (k − l)
(l − k)2

×Tr

{
1

− 1
2 P̂ + l̂ − m

γν
1

− 1
2 P̂ + k̂ − m

× O(λ)
234

1
1
2 P̂ + k̂ − m

γµ
1

1
2 P̂ + l̂ − m

γρ

}
. (52)

In the previous formula ∆µν(k − l) is chosen in the FY
gauge (11) and O(λ)

234 describes the annihilation of a pair
e+ e− at rest to three photons, namely:

O(λ)
234=−i e3 γ · ελ4

1

− 1
2 P̂ + k̂ + k̂4 − m

×γ · ελ3

1
1
2 P̂ + k̂ − k̂2 − m

γ · ελ2 . (53)

It is worthwhile to underline that there are two re-
gions in the loop momenta space from which the inte-
gral (52) receives the main contributions: one, where the
fermion momenta are far off mass–shell, which correspond
to l, k ∼ m, and another one with fermion momenta al-
most on mass–shell, l, k ∼ α m. It is this last region which
originates the logarithmic term. In the analysis of this re-
gion we can neglect k and l in the numerators of fermion
propagators (after rationalizing them) and in O(λ)

234. Then,
using γ matrices algebra, we can rewrite the trace in (52)
in the following way:

−PµPν m2 Tr {O(λ)
234 (1 + γ0) γρ (1 − γ0)} + O(α2) , (54)

4 Strictly speaking, Fig. 2b represents only a typical loop.
There are five more graphs of the same kind corresponding to
permutations of the three final photon states

where we have used the fact that P 2 − 4m2 = O(α2). The
integration in k is now identical to that of (15). We use
the result [5]:

∫
d4k

iπ2

× −m2∆00(k − l)
(k − l)2

[
(− 1

2P + k)2 − m2
] [

( 1
2P + k)2 − m2

]
≈ π m

|l| arctan
|l|
γ

− 3. (55)

The integral in l can be performed in two steps. First,
we integrate l0 using the method of residues:∫

dl0
2π

× 1[
(− 1

2P + l)2 − m2 + i0
] [

( 1
2P + l)2 − m2 + i0

]
≈ i

4m

1
|l|2 + γ2 . (56)

The remaining integral over the spatial 3–momentum l is
logarithmically divergent. However, we do not worry here
for the ultraviolet sector, which is outside the integration
region we are considering and gives no logarithmic contri-
bution in α. The considerations made at the beginning of
this section permit us to replace the upper limit by m in
order to extract the logarithmic term which arises from
the infrared behaviour:∫

d3l

(2π)3
i

4m

1
|l|2 + γ2

m π

|l| arctan
|l|
γ

≈ i

16
ln

1
α

, (57)

where we have approximated arctan |l|
γ to π

2 .
Collecting all the factors, we have as a contribution to

G(λ)
(R) ρ:

e3

(4π)2
m2

4
ln

1
α

×
∑
σ∈S3

Tr
{O(λ)

σ(234) (1 + γ0) γρ (1 − γ0)
}

, (58)

where σ is a permutation of (234). The amplitude receives
a contribution:

∆M (m λ)
AR

= α2 log α
1
16

∫
d4p

(2π)4
Tr {Ψ (m)(p) γρ}

×
∑
σ∈S3

Tr
{O(λ)

σ(234) (1 + γ0) γρ (1 − γ0)
}

, (59)

and the corresponding correction to the width is the inte-
gral over the three final photon phase space of

1
3

∑
m

1
3!

∑
λ

2 Re
(
∆M (m λ)

AR

∗ M (m λ)
0

)
. (60)
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The lowest order amplitude, M0, can be written in our
notation as

M (m λ)
0 =

∑
σ∈S3

∫
d4p

(2π)4
Tr

{
Ψ (m)(p) O(λ)

σ(234)

}
. (61)

Using techniques similar to those described in [5], it is
possible to rewrite the product of the traces in such a way
that the leading width Γ0 appears explicitly. We find

∆ ΓAR = −α2 ln
1
α

Γ0 . (62)

This result is in agreement with previous calculations [9,
15,12].
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Appendix A

In this appendix we discuss the contribution to MAB of
the term trµνρ(k) − trµνρ(0) and of the vertex countert-
erm, using as a regulator a sharp cutoff Λ in momentum
space. Of course the physical prediction coincides with
that obtained in Sect. 2 in dimensional regularization.

As discussed in Sect. 2, the part of the integral (8)
given by trµνρ(k) − trµνρ(0) has no infrared singularity
and we can put the internal positronium momentum p
equal to zero in the loop integral, making only an error
of order α2. Hence the integral in p can be trivially per-
formed; it remains the loop integral. Introducing Feynman
parameters, making simple integrations in5

−i e
α

4π

∫
d4k

iπ2

× γµ k̂ γρ k̂ γν ∆µν(k)
k2

[
(k + 1

2P )2 − m2
] [

(k − 1
2P )2 − m2

] (A.1)

and ignoring a term proportional to Pρ, which does not
contribute to the amplitude MAB due to the gauge invari-
ance of the light–light scattering tensor, we get

−i e
α

4π

(
3 ln

Λ2

m2 +
5
2

)
γρ . (A.2)

Therefore the contribution of this term to the amplitude
is:

α

4π

(
3 ln

Λ2

m2 +
5
2

) (α

π
MA

)
. (A.3)

The computation of the self–energy – to get the vertex
counterterm – is more subtle. The mass operator to lowest
order is:

Σ(l) = − i
α

4π

∫
d4k

iπ2

γν (l̂ − k̂ + m) γµ ∆µν(k)
(k2 − λ2) [(l − k)2 − m2]

, (A.4)

5 In this case ∆µν(k) is given by (11)

where λ is the fictitious photon mass. Note that in the
FY gauge the numerator does not contain any term which
produces linear divergences, therefore the Feynman trick
to join the denominators and the subsequent shift of the
loop momentum can be used, giving the result:

Σ(p)=
− i α

2π

∫ 1

0
dx

[
(3m − p(1 + x))

(
ln

Λ2

a2 − 1
)

− p

2a2

(
(1 − x)a2 + 4x2(1 − x)p2)] , (A.5)

with

a2=m2 (x2 + ν(1 − x) + x(1 − x)ρ) ,

ν=
λ2

m2 , (A.6)

ρ=1 − p2

m2 .

The electron wave function renormalization constant, in
the on–mass–shell renormalization scheme, is defined as

Z = 1 +
dΣ(p)

dp

∣∣∣∣
p̂=m, p2=m2

. (A.7)

Simple algebra leads to the following expression for ZΛ

FY :

1 +
α

2π

∫ 1

0
dx

[
−(1 + x)

(
ln

Λ2

m2 − 2 lnx − 1
)

−9
2
(1 − x) + 2J(x, ν, ρ)

]∣∣∣∣
ν,ρ→0

, (A.8)

where

J(x, ν, ρ) =
x (1 − x)2 (2 − x) (ν + ρx)

[x2 + ν(1 − x) + x(1 − x)ρ]2
. (A.9)

The quantity
∫ 1
0 Jdx depends on the way in which ν and

ρ tend to zero: ∫ 1

0
Jdx=

1
2
ρ << ν → 0 ,

∫ 1

0
Jdx=2ν << ρ → 0 . (A.10)

Y. Tomozawa [18] showed that the right result appears in
the limit ν << ρ → 0. The resulting expression is then:

ZΛ

FY = 1 − α

4π

(
3 ln

Λ2

m2 − 3
2

)
. (A.11)

This implies that the contribution of the vertex countert-
erm insertion is:

− α

4π

(
3 ln

Λ2

m2 − 3
2

) (α

π
MA

)
. (A.12)

To have the total expression of MAB we only need now
the contribution of the term trµνρ(0). It does not contain
any divergence, hence it can be recovered directly by (16).
We have: (

1 − 3
α

π

) (α

π
MA

)
. (A.13)

Collecting the results of (A.13), (A.3) and (A.12), we get
the same as in dimensional regularization (28).
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Appendix B

We write here the explicit expressions for the quantity
R(234) entering the tensor G. Accommodation from the
results of paper [24] to the annihilation channel was done
in the paper [23].

For the case ε = m (notation of [23]) we obtain:

E(1)
+++(234)

=
2a3a4

ν3
+

2a3

ν3

(
2a3a4

a2
+

2a4

ν3
− a3

)
(B(a3) − B(1))

+2a3a4

(
2
a2

+
1
ν4

)
(B(a4) − B(1))

+
2a3

a2

(
a3 − a4 − 2a3a4

a2

)
× (T (a3) + T (a4) − T (1) − I(a3, a4))

−a3

a4
T (a2) +

a3

a2
(T (a2) − T (a4)) − T (a3)

+a3

(
3
ν3

− 2a4

ν2
3

− 1
a2

− 1
a4

)
(T (a3) − T (1))

+
ν2 (a2 − a4)

a2a4
I(a2, a3) − ν2a3

a2a4
I(a2, a4)

−a3

ν4
(T (a4) − T (1))

+
(

2 − a3

a4
+

3a3

a2

)
I(a3, a4) ; (B.1)

E(1)
−++(234)

= a3

(
1
a4

− 1
a2

)
(T (a2) + T (a3) + T (a4) − T (1))

−ν2

a4
I(a2, a3) +

ν4

a2
I(a3, a4) ; (B.2)

E(2)
+++(234)

=
(

4a3

a2
− 2a3

ν3

)
(B(a3) − B(1))

+
(

4a4

a2
− 2a4

ν4

)
(B(a4) − B(1))

−
(

4a3a4

a2
2

+
2ν2

a2

)
(T (a3) + T (a4) − T (1)

−I(a3, a4))
(

1
a2

+
1
a3

+
1
a4

)
T (a2)

−
(

a2

ν3a4
+

3
a2

)
T (a3) −

(
a2

ν4a3
+

3
a2

)
T (a4)

+
(

ν2

a3a4
− 1

ν3
− 1

ν4
+

3
a2

)
T (1)

+
(

a4 + 1
a3a2

+
ν3

a2a4

)
I(a2, a3)

+
(

a3 + 1
a4a2

+
ν4

a2a3

)
I(a2, a4)

+
(

ν2 + 1
a4a3

+
5
a2

)
I(a3, a4) ;

E(2)
−++(234)

= −2 −
(

1
a2

+
1
a3

+
1
a4

)
×(T (a2) + T (a3) + T (a4) − T (1))

+
(

1
a4

+
1

a2a3

)
I(a2, a3) +

(
1
a3

+
1

a2a4

)
I(a2, a4)

+
(

1
a2

+
1

a4a3

)
I(a3, a4) . (B.3)

In the previous formulas we used the notations:

ai=1 − νi, ν2 + ν3 + ν4 = 2 , (B.4)

B(z)=−1 +

√
1
z

− 1 arcsin
√

z , (B.5)

T (z)=−(arcsin
√

z)2 , (B.6)
I(a3, a2)=F (a3, γ) + F (a2, γ) − F (1, γ) , (B.7)

F (a, γ)=
∫ 1

0

dx

γ2 − x2 ln
[
1 − a(1 − x2)

]
, (B.8)

with γ =
√

1 + a4
a3a2

.
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